
Tortazo Documentation
Release 1.1

Adastra

September 02, 2014

Contents

1 About Tortazo - Gentle Introduction. 3
1.1 What? . 3
1.2 How? . 3
1.3 Why? . 3
1.4 When? . 3
1.5 Who? . 4
1.6 Contact? . 4
1.7 Legal Warning!! . 4

2 Getting Started 5
2.1 Instalation and Dependencies . 5
2.2 Other Dependencies . 6
2.3 Usage of Tortazo: Execution Modes . 6
2.4 Plugins management . 7
2.5 Repository Mode . 7

3 Mode Gather Information. 9
3.1 Gather information about exit relays in TOR . 9

4 Database mode in Tortazo 13

5 Botnet mode in Tortazo. 15
5.1 Botnet mode examples. 15

6 Supported Switches in Tortazo. 17
6.1 Simple Switches. 17
6.2 Valued Switches. 18

7 Available Plugins in Tortazo 21
7.1 Plugins to Gather Information and enumeration of hidden services and TOR relays 21
7.2 Plugins to Pentesting and attack hidden services and TOR relays . 24
7.3 Plugins for integration with Third-Party tools . 26

8 Plugin Development in Tortazo 31
8.1 Utilities in Tortazo for Plugin Development. 32

9 GENERAL FAQs 35
9.1 ¿What is this? . 35
9.2 I have problems when I run “Tortazo.py” script. 35

i

9.3 ¿This is free? . 35
9.4 ¿How can I help you? . 35

10 SPECIFIC FAQs 37
10.1 I get “Import Errors” when I run the Tortazo.py script. 37
10.2 I have problems running the onion repository mode and some plugins which perform connections

against hidden services in TOR, ¿what am I doing wrong? . 37
10.3 I get an error when try to loading a Plugin . 37
10.4 Oh man, the onion repository mode has been running for the last “n” hours and I don’t have any result

¿Am I doing something wrong? . 37
10.5 When I run some functions of the plugins “crawler” or “hiddenService” twice, I get the error “Reac-

torNotRestartable”. 38
10.6 I’m trying to use shodan to gather information about the relays found, but I get errors 38
10.7 I get an strange error... ¿What can I do? . 38

11 Indices and tables 39

ii

Tortazo Documentation, Release 1.1

Tortazo is a Audit and Attack framework for TOR’s deep web. Supports the integration with other frameworks and
tools like Nessus, W3AF, Nikto, Metasploit and others, but focusing in TOR relays and hidden services as targets.
Contents:

Contents 1

Tortazo Documentation, Release 1.1

2 Contents

CHAPTER 1

About Tortazo - Gentle Introduction.

1.1 What?

Tortazo is a tool written in Python to perform pentesting activities through the TOR deep web. Allows the integration
with other well known frameworks available in the market and any python developer could write plugins to execute
attacks against hidden services and relays in TOR.

1.2 How?

Tortazo is written in Python language using a lot of libraries to perform pentesting activities. This project is almost en-
tirely “I+D” because there’s few tools publicly available to audit the hidden services or relays in TOR. The researching
and innovative ideas are much appreciated because, there’s a lot of work and things to implement in Tortazo.

1.3 Why?

The anonymous networks are the favorite “tool” of criminals and this is a shame because networks like TOR, I2P or
Freenet weren’t designed to protect killers, narcos, pedofiles and that kind of people. The initial idea of this project,
is develop a tool to compromise the identity of that kind people. ¿How? A lot of them, usually are not aware of the
vulnerabilities included in their boxes. A lot of them, just exposes hidden services with the “defaults” because they’re
not security professionals and usually they are just end-users with basic knowledge about computing. A lot of them
just starts TOR and exposes their machines as relays in the TOR network or creates websites as TOR hidden services
without any security consideration. This is a good “starting point” to try to expose them and the purpose of Tortazo
is to include a lot of features to find that kind of flaws and bring a bridge between the TOR network and the “good”
hackers.

1.4 When?

This project was initiated in early 2014 and actually is being developed just by me (@jdaanial aka. Adastra). Initially
was a simple prototipe to test the features included in Stem library for TOR. (https://stem.torproject.org/) Stem is a
impresive python library which uses the TOR controller protocol to manage a TOR instance. However, also includes
utilities to querying the TOR authoritative directories and download the descriptors with the information about the
relays running in TOR. On other hand, there’s a lot of libraries and tools to perform pentesting activities which will
be perfect against some vulnerable web applications in the deep web. Tortazo allows the integration from some of the
most known of this tools and frameworks

3

https://stem.torproject.org/

Tortazo Documentation, Release 1.1

1.5 Who?

I’m a software developer and security enthusiast. Just a guy who spent his time playing with libraries, programming
languages, tools, security techniques, network protocols and anything related with computers :-) What I like:

• I like to read almost about everything.

• I like the free speech.

• I like free software.

• I like the hacker philosophy.

• I like the hacktivism.

• I like to write code.

• I like to find and fix bugs in code.

• I like to improve code.

• I like the reverse engineering.

• I like to talk with people about things that matter. (obviously, this exclude football, politics, tv shows and other
bullshit).

• I like the freedom. Everyone should be free to do anything, but without affecting the freedom of others.

What I dislike:

• I dislike the bugs.

• I dislike the awful code.

• I dislike the people lazy.

• I dislike the mediocrity.

• I dislike the authoritarianism.

• I dislike some rock stars “selling smoke” in conferences and other events. We need more mentors and less
security rock stars. Sadly, this is the worst thing that I’ve found in the infosec environment in my country and
other places.

1.6 Contact?

Sure, writes an email to: debiadastra [at] gmail.com I’ll reply as soon as possible. Also, you can follow me in Twitter.
@jdaanial

1.7 Legal Warning!!

I’ve developed this tool to improve my knowledge about TOR and Python. I’m a security enthusiast and I hope that
you use this tool with responsibility, but if that is not the case, I’m not responsible for the use (or misuse) of this tool.
If you found vulnerabilities or any kind of flaw in any non-malicious exit node of TOR, please, send the report to the
admin of the relay, in this way you can contribute to build solid and secure TOR circuits for all of us.

OK, are you ready? Go and read about Tortazo and start to use it

4 Chapter 1. About Tortazo - Gentle Introduction.

CHAPTER 2

Getting Started

Stem is a powerful library written in Python to perform various operations against TOR Clients and Directory Au-
thorities. The information gathered using Stem could be very useful to an attacker to gather information about the
relays available in the TOR network. Tortazo is an open source project to gather information about ExitNodes in the
TOR Network, perform bruteforce attacks against services like FTP or SSH and create a Botnet with the compromised
ExitNodes over SSH. Tortazo includes a lot of features in the plugins form to perform pentesting activities against
TOR relays and hidden services in the deep web. In this documentation, you’ll see in detail all the features included
in Tortazo. The main objetive of this project is establish a bridge between the TOR deep web and the Python hackers.
Let’s execute python scripts against TOR!

2.1 Instalation and Dependencies

To use Tortazo, you can use the latest stable release located in “bin” directory. However, if you want to use the
development version located in the GIT repository you’ll need the following dependencies:

• Python 2.6 or higher: http://python.org

• Twisted: https://twistedmatrix.com/trac/

• Paramiko: https://github.com/paramiko/paramiko

• Python-Nmap http://xael.org/norman/python/python-nmap/

• Python-shodan: https://github.com/achillean/shodan-python

• Stem: https://stem.torproject.org/

• TxTorCon: https://txtorcon.readthedocs.org

• Plumbum: https://pypi.python.org/pypi/plumbum

• Fabric: http://docs.fabfile.org/en/1.8/

• Requests: https://pypi.python.org/pypi/requests

• IPython: http://ipython.org/

• PyNessus-rest: https://github.com/Adastra-thw/pynessus-rest

• PySNMP: http://pysnmp.sourceforge.net/

• IRLib: https://github.com/gr33ndata/irlib

• Jinja2: http://jinja.pocoo.org/docs/intro/

• BeautifulSoup: http://www.crummy.com/software/BeautifulSoup/

5

http://python.org
https://twistedmatrix.com/trac/
https://github.com/paramiko/paramiko
http://xael.org/norman/python/python-nmap/
https://github.com/achillean/shodan-python
https://stem.torproject.org/
https://txtorcon.readthedocs.org
https://pypi.python.org/pypi/plumbum
http://docs.fabfile.org/en/1.8/
https://pypi.python.org/pypi/requests
http://ipython.org/
https://github.com/Adastra-thw/pynessus-rest
http://pysnmp.sourceforge.net/
https://github.com/gr33ndata/irlib
http://jinja.pocoo.org/docs/intro/
http://www.crummy.com/software/BeautifulSoup/

Tortazo Documentation, Release 1.1

• Scrapy: http://scrapy.org/

• PyFiglet: https://github.com/pwaller/pyfiglet

2.2 Other Dependencies

Among the Python libraries needed to use Tortazo, you’ll need some tools to use plugins or some execution modes in
Tortazo.

• Nmap: Mandatory dependency in Gather Information mode. http://nmap.org/

• Nessus: Mandatory dependency to use Nessus from Tortazo. (NessusPlugin).
http://www.tenable.com/products/nessus/

• Metasploit Framework: Mandatory dependency to use Metasploit Framework from Tortazo (MetasploitPlugin).
http://www.metasploit.com/

• Nikto: Mandatory dependency to use Nikto from Tortazo (NiktoPlugin). http://www.cirt.net/Nikto2/

• Nexpose: Mandatory dependency to use Nexpose from Tortazo (NexposePlugin).
https://www.rapid7.com/products/nexpose/

2.3 Usage of Tortazo: Execution Modes

There are four execution modes in the current version of Tortazo, each of this allows gathering information from the
TOR network and performing attacks against relays and hidden services. The execution modes are the following.

2.3.1 Gathering Information

This is the most basic execution mode, which will download the descriptors from the latest consensus generated by the
TOR directory authorities and then allows applying some filters on the information downloaded. Finally, launches an
scan with Nmap against the data filtered, identifying open ports and a lot of details about the target, you can use every
option included in Nmap scanner, including the Scripting Engine (NSE). The results will be stored in the local database
of Tortazo and if you runs Tortazo multiple times in this mode, more information get stored in database. The larger
samples of data have more chances of getting positive results against any of the relays registered, so it’s recommended
to run Tortazo in this mode multiple times. Read more about gather information in Tortazo Mode Gather Information.

2.3.2 Botnet Mode

This mode is used to execute commands over a set of SSH servers compromised using the “bruter” plugin. As you
can see in plugins-management-label bruter plugin is used to execute dictionary attacks against multiple services in
relays or hidden services. If the dictionary attack against a SSH server is successful, the plugin writes the details of
the compromised server in the file “<TORTAZO_DIR>/tortazo_botnet.bot”. In this mode, Tortazo will read that file
to create the bots in the context of the botnet. You can run parallel commands against the entirely botnet or exclude
bots to run the commands just over some machines. Read more about Botnet mode in Tortazo Botnet mode in Tortazo.

2.3.3 Database Mode

If you have enough information in your database, you can use it to perform direct attacks using some of the available
plugins in Tortazo. In this mode, there are no connections to the TOR directory authorities to gather information about

6 Chapter 2. Getting Started

http://scrapy.org/
https://github.com/pwaller/pyfiglet
http://nmap.org/
http://www.tenable.com/products/nessus/
http://www.metasploit.com/
http://www.cirt.net/Nikto2/
https://www.rapid7.com/products/nexpose/

Tortazo Documentation, Release 1.1

the relays that conforms the network, instead, Tortazo will use the information stored in database. Read more about
Database mode in Tortazo Database mode in Tortazo

2.4 Plugins management

The plugins in Tortazo are the best way to integrate external routines written in Python directly in the framework,
allowing to any Python developer write his own tools to perform audits against hidden services and TOR relays. There
are various plugins already developed which integrates tools like Nessus, W3AF, Metasploit Framework, among others
and custom plugins to perform pentesting activities. Read more about the development and usage of plugins in Tortazo
plugins-management-label

2.5 Repository Mode

In this mode, Tortazo will try to generate ONION addresses and then tests if the generated addresses point to a hidden
service in the deep web. Every onion address is composed by 16 characters and the valid chars are the full alphabet
in lowercase and the digits between 2 and 7, as you can imagine, the amount of ONION addresses that could be
generated is VERY, VERY HUGE and this is why the repository execution mode will not finish in few hours, could take
days or even weeks generate and test every “possible” onion address. Actually, the execution of this mode, depends
A LOT of the information that you have about of an address and the processing capacity of your machine. If you
represents a government, maybe this kind of limitations related to processing capacity are less severe compared with
the restrictions of any natural person. However, please read more about the development and usage of plugins in
Tortazo repository-mode-label

2.4. Plugins management 7

Tortazo Documentation, Release 1.1

8 Chapter 2. Getting Started

CHAPTER 3

Mode Gather Information.

3.1 Gather information about exit relays in TOR

This is the simplest mode of execution in Tortazo. In this mode, Tortazo will perform an Nmap scan and the results
for every exit node in the Directory Authorities or in the local TOR instance will be stored in the local database used
by Tortazo. Below you’ll see various switches to explain how to use the script Tortazo.py. On other hand, is much,
much faster use the local descriptors instead of connect with the directory authorities (directly or using mirrors, both
connection types are very slow) also depending on the number of users connected, sometimes the servers are busy and
the connections with the directory authorities will fail or will be unstable. Anyways, you can use any method to gather
information, but the fact is that the directory authorities have a lot of information about new relays available and the
local descriptors have a short set of exit nodes. So, you should choose wisely your weapon!

Note: KEEP IN MIND:

• In the new versions of the TOR Client, by default the microdescriptors will be downloaded to compose the
circuits. This is good because the circuit construction is much faster, but the information about the relays is
very limited. So, if you plan to gather information with Tortazo using the TOR Client, you need to set the
“UseMicrodescriptors” switch to “0” in your torrc file.

• If you want to use the TOR Client to gather information, you’ll need to open the Control Port to use the Stem
Controller (and set a password for security issues) to connect with the local instance and get the server descrip-
tors. Please, check your torrc file.

• The connections with the TOR Authorities could be very slow and sometimes unstable.

• You can use all the features included in Nmap, NSE Scripts even, just by using the switch “-a/–scan-arguments”

• If you want to use Shodan, you’ll need a valid developer key. That value should be written into a file in a single
line and use the switches “–use-shodan” and “–shodan-key”

• In botnet mode, Tortazo will not perform connections against TOR (neither local nor remote)

3.1.1 Gather information examples.

Ok, now lets see some examples about the use of Tortazo in this execution mode.

Show the available Options

Shows the help banner of Tortazo:

python Tortazo.py -h

Connecting to the Mirror servers of TOR

9

Tortazo Documentation, Release 1.1

• Connect with the TOR Authorities using the mirrors servers (-d / –use-mirrors).

• Enable the “verbose” mode (-v / –verbose).

• Scan the exit nodes which operating system is Windows (-m / –mode windows):

python Tortazo.py -d -v -m windows
python Tortazo.py --use-mirrors --verbose --mode windows

Connecting to the TOR servers (authorities)

• Connect to the TOR Authorities directly.

• Enable the “verbose” mode (-v / –verbose)

• Scan the exit nodes which operative system is Linux (-m / –mode linux):

python Tortazo.py -v -m linux
python Tortazo.py --verbose --mode linux

Specify the number of relays to fetch from the descriptors downloaded

• Connect with the TOR Authorities directly.

• Enable the “verbose” mode (-v / –verbose).

• Scan the exit nodes which operative system is Linux (-m / –mode linux)

• Fetch the first 30 nodes from the list of exit nodes found (this value by default is very short: 10):

python Tortazo.py -n 30 -v -m linux
python Tortazo.py --servers-to-attack 30 --verbose --mode linux

Custom Nmap scan

• Connect with the TOR Authorities directly.

• Enable the “verbose” mode (-v / –verbose)

• Scan the exit nodes which operative system is Linux (-m / –mode linux)

• Fetch the first 30 nodes from the list of exit nodes found

• Performs the Nmap scan with the specified options “-sSV -A -n”:

python Tortazo.py -n 30 -v -m linux -a "-sSV -A -n"
python Tortazo.py --servers-to-attack 30 --verbose --mode linux --scan-arguments "-sSV -A -n"

Connect with an Local instance of TOR.

• Connect to the Local instance of TOR and use the exit nodes stored in the local descriptors (-c / –use-circuit-
nodes)

• Enable the “verbose” mode (-v / –verbose)

• Scan the exit nodes which operative system is Linux (-m / –mode linux):

python Tortazo.py -v -m linux -c
python Tortazo.py --verbose --mode linux --use-circuit-nodes

Specify an fingerprint to filter

• Connect with the TOR Authorities directly.

• Enable the “verbose” mode (-v / –verbose)

• Scan the exit nodes which operative system is Linux (-m / –mode linux)

10 Chapter 3. Mode Gather Information.

Tortazo Documentation, Release 1.1

• Fetch the first 30 nodes from the list of exit nodes found

• Perform the Nmap scan with the specified options “-sSV -A -n”

• Filter by FingerPrint (-e / –exit-node-fingerprint):

python Tortazo.py -n 30 -v -m linux -a "-sSV -A -n" -e FFAC0F4C85052F696EBB9517DD6E2E8B830835DD
python Tortazo.py --servers-to-attack 30 --verbose --mode linux --scan-arguments "-sSV -A -n" --exit-node-fingerprint FFAC0F4C85052F696EBB9517DD6E2E8B830835DD

Using Shodan to Gather information about the relays found

• Connect with the TOR Authorities directly.

• Enable the “verbose” mode (-v / –verbose)

• Scan the exit nodes which operative system is Linux (-m / –mode linux)

• Fetch the first 30 nodes from the list of exit nodes found

• Performs an Nmap scan with the specified options “-sSV -A -n”

• Use Shodan (-s / –use-shodan) with the specified developer key (-k / –shodan-key). The key must be stored in a
text file in a single line:

python Tortazo.py -n 30 -v -m linux -a "-sSV -A -n" -s -k /home/developer/shodanKeyFile
python Tortazo.py --servers-to-attack 30 --verbose --mode linux --scan-arguments "-sSV -A -n" --use-shodan --shodan-key /home/developer/shodanKeyFile

3.1. Gather information about exit relays in TOR 11

Tortazo Documentation, Release 1.1

12 Chapter 3. Mode Gather Information.

CHAPTER 4

Database mode in Tortazo

Tortazo uses an internal SQLite database to store the TOR relays scanned with Nmap and hidden services discovered
by the onion repository mode. The switch “-D / –use-database” allows to use the database records instead to perform
a scan. This switch is very useful to use with some plugins which requires targets to attack or enumerate.

The core tables used by Tortazo in the version 1.1 are:

• Scan: Stores the date and number of relays found in every scan performed by Nmap.

• TorNodeData: Stores the information of relays found and the state of every one.

• TorNodePort: Stores the information of port states (closed, filtered or opened).

• OnionRepositoryResponses: Stores the responses from the HTTP connections performed against the hidden
services in Onion Repository.

• OnionRepositoryProgress: Stores the progress for the Incremental search in the Onion Repository mode.

On other hand, the Crawler plugin stores the responses directly in the database, using the following structure

• CrawlerPluginPlage: Stores the pages and HTTP responses.

• CrawlerPluginImage: Stores the images found in the crawling process.

• CrawlerPluginPageImage: Stores the relation between the images found and the pages.

• CrawlerPluginForm: Stores the basic information about the forms found in the pages crawled by the plugin.

• CrawlerPluginFormControl: Stores the controls which are included in every form found.

The database schema in this mode is the following.

13

Tortazo Documentation, Release 1.1

14 Chapter 4. Database mode in Tortazo

CHAPTER 5

Botnet mode in Tortazo.

The botnet mode is specified with the option -z/–zombie and depends on the tortazo_botnet.bot file. In this mode,
Tortazo will read that file and then, tries to perform SSH Connections using the hosts and credentials defined in that
file. Every line in “tortazo_botnet.bot” have the next format:

host:user:passwd:port:nickname

The library “Fabric” is used to connect with the SSH servers and execute commands across a set of SSH Servers.
When you specify the switch -z/–zombie option, Tortazo will not connect with the TOR authoritative directories, just
will read the tortazo_botnet.bot file and then will try to open a shell on the specified bot (-o/–open-shell switch) or
runs a command (-r/–run-command switch). In this mode, you must specify the nicknames that will be excluded from
the botnet (comma separated) or the keyword “all” to include all bots from tortazo_botnet.bot file.

5.1 Botnet mode examples.

Using this mode is very simple, but the file located in <TORTAZO_DIR>/tortazo_botnet.bot must have a list of bots
with the connection details of every bot for each line.

Execute commands across the entirely botnet Runs the commands: “id; uname -a; uptime”:

python Tortazo.py -v -z all -r "id; uname -a; uptime; w"
python Tortazo.py --verbose --threads 10 --zombie-mode all --run-command "id; uname -a; uptime; w"

Open a shell in the specified bot Using the shell identifier to open a new console in the specified host.:

python Tortazo.py -v -z all -o
python Tortazo.py --verbose --zombie-mode all --open-shell

Note: KEEP IN MIND:

Obviously, the credentials in the tortazo_botnet.bot file should be valid for every host registered. If the credentials are
not valid, “Fabric” will resolve the authentication method (password or public key) and will require that you enter the
password or passphase.

15

Tortazo Documentation, Release 1.1

16 Chapter 5. Botnet mode in Tortazo.

CHAPTER 6

Supported Switches in Tortazo.

The following list is a summary of the core switches supported by Tortazo v1.1 and their usage.

6.1 Simple Switches.

The following is a list of single switches which doesn’t receive any value. These switches allows to activate features
in Tortazo.

6.1.1 Common Switches for all modes

• -v / –verbose: Activates the debug mode. Shows debug, info and error messages. It’s very useful to see a full
trace of actions performed by Tortazo and is recommended to use. However, in some cases this option shows
many traces, for example, the plugin “BruterPlugin” uses Paramiko library to execute Brute Force attacks against
relays and hidden services with an SSH Server up and running and Paramiko shows a very detailed information
about every connection when the debug mode is active.

• -U / –use-localinstance: Tortazo can start a new instance of TOR automatically using the switch “-T / –tor-
localinstance”. Use the switch “-U / –use-localinstance” if you want to use the socks proxy and other settings
defined in the instance started by Tortazo.

6.1.2 Switches for Gathering Information

• -b / –brute: Deprecated in v1.1. Replaced by the plugin “BruterPlugin”. Actually this switch is not supported

• -d / –use-mirrors: By default, Tortazo uses the authoritative directories of TOR and with this option, Tortazo
will perform a connection with the mirrors of the authoritative directories to get the last consensus available.

• -s / –use-shodan: Allows to use ShodanHQ service to gather information about every relay found (up and
running) in the descriptors downloaded from the TOR authorities or their mirrors up and running or stored in
database. The switch “-k / –shodan-key” must be specified.

• -c / –use-circuit-nodes: Instructs to Tortazo to connect to a local instance of TOR through the control port of
that instance instead of connect with authoritative directories or their mirrors. Any TOR client (i.e. TorBrowser)
will connect with the authoritative directories to download the last consensus and build new virtual circuits
with the TOR relays included in the descriptors. Tortazo use the information downloaded by that TOR instance
(client) and will perform the actions specified by the other switches used. Note that the TOR instance should
use the property “UseMicrodescriptors” with the value “0” in the “torrc” file used to start the instance. This is
important to Tortazo, because in this way, the TOR instance will download the “Server Descriptors” from the
authoritative directories instead of the “Micro Descriptors”. In recent versions of TOR, by default the client

17

Tortazo Documentation, Release 1.1

will download the “Micro Descriptors” with much less information about the relays in the network, this default
behaviour should be overwritten and allows Tortazo to get as much information as he can from the descriptors
downloaded.

6.1.3 Switches for Database Mode

• -D / –use-database: Tortazo always stores in a SQLite database every scan performed against the relays found
in the descriptors downloaded. This switch uses the records stored in database and avoids performing con-
nections to the TOR authoritative directories. The option “-s / –scan-identifier” allows to specify the num-
ber of scan and recover the records associated with that scan identifier. The database is located in “<TOR-
TAZO_DIR>/db/tortazo.db”.

• -C / –clean-database: Deletes every record stored in the database.

6.1.4 Switches for Botnet Mode

• -o / –open-shell: This option is used in “Botnet Mode”, which is activated with the switch “-z / –zombie-mode”
and allows to create a new interactive shell with the bot entered by the user.

6.1.5 Switches for Plugins management

• -L / –list-plugins: List of plugins loaded in Tortazo. Shows author, description, version, etc.

6.2 Valued Switches.

The following is a list of valued switches which receive arguments.

6.2.1 Common Switches for all modes

• -T <path_to_torrc> / –tor-localinstance <path_to_torrc>: Start a new local TOR instance with the “torrc”
file specified. Usually, the user will specify the switch “-U / –use-localinstance” too.

6.2.2 Switches for Gathering Information

• -n <number_of_relays> / –servers-to-attack <number_of_relays>: The number of relays returned by the
TOR authoritative directories usually is very large. The user uses this switch to specify the limit, a maximum
number of relays which will be used by Tortazo. The default value is “10” if it’s not specified. Note that 10
relays is a very low value, the user should use this switch and specify a higher value.

• -t <number_of_threads>/ –theads<number_of_threads>: Deprecated in v1.1. Replaced by the plugin
“BruterPlugin”. Actually this switch is not supported.

• -m <os> / –mode <os>: Filter the platform (operative system) of the relay to attack. The accepted values are:
“windows”, “linux”, “darwin”, “freebsd”, “openbsd”, “bitrig”,”netbsd”. Not case-sensitive.

• -f <password_file> / –passwords-file <password_file>: Deprecated in v1.1. Replaced by the plugin “Bruter-
Plugin”. Actually this switch is not supported.

• -k <shodan_key_file> / –shodan-key <shodan_key_file>: Used with the “-s / –use-shodan” to perform queries
with Shodan using the IP address of the relays found. This switch receives a text file, which contain a unique
line with the developer key used by the Shodan API to perform queries. More info: https://developer.shodan.io/

18 Chapter 6. Supported Switches in Tortazo.

https://developer.shodan.io/

Tortazo Documentation, Release 1.1

• -l <list_of_ports> / –list-ports <list_of_ports>: Comma-separated list of ports to scan with Nmap. The scan
internally will use the Nmap switch “-p” to specify this list of ports.

• -a <nmap_arguments> / –scan-arguments <nmap_arguments>: Specify the arguments used by Nmap to
perform every scan on the relays founded.

• -e <relay_fingerprint> / –exit-node-fingerprint: Specify an fingerprint to filter the exit nodes received in the
dataset (Data from descriptors or Data in the local database.) If the fingerprint is not equals to any relay, Tortazo
will finish without any result. This option should be used to perform direct attacks against a known exit node.

• -i <controller_port> / –controller-port <controller_port>: If the user want to perform connections against a
TOR local instance to get and parse descriptors, should use the switch “-c / –use-circuit-nodes” as you’ve seen
above. However, if the local instance uses a non-default controller port, this switch allows specifying it.

6.2.3 Switches for Database Mode

• -S <scan_identifier> / –scan-identifier <scan_identifier>: Specify the scan identifier in the Scan table. Tortazo
will use the relays related with the scan identifier specified with this switch. This switch should be used with
the switch “-D / –use-database”.

6.2.4 Switches for Botnet Mode

• -z <excluded_bots> / –zombie-mode <excluded_bots>: Tortazo supports the Botnet mode over SSH. In this
mode, Tortazo will read the file “tortazo_botnet.bot” located in “<TORTAZO_DIR>/tortazo_botnet.bot” where
every line of the file is a SSH server compromised using the “BruterPlugin” against relays with SSH servers
with usernames and passwords easy to guess. This switch enables the Botnet Mode and allows selecting the
nicknames that will be excluded. (Nicknames included in the tortazo_botnet.bot). For instance, “-z Nick-
name1,Nickname2” excludes the bots with nicknames “Nickname1” and “Nickname2” and “-z all” allows to
include all nicknames in the Botnet Mode. In this mode, Tortazo will not perform any kind of query against
the TOR authoritative directories, instead will try to execute parallel commands against the bots loaded. The
user usually would like to specify the command to execute against the bots using the switch “-r <command> /
–run-command <command>” or open an interactive shell with the switch “-o / –open-shell”.

• -r <command> / –run-command <command>: Execute a command across the hosts of the botnet. Requieres
the -z/–zombie-mode. example: –run-command “uname -a; uptime”

6.2.5 Switches for Plugins management

• -P <plugin_name> / –use-plugin <plugin_name>: Loads the interpreter for the specified plugin. The name
of the plugin must be registered in Tortazo and the interpreter loaded will contain the functions and elements
available in the plugin. This elements allows the interaction with the plugin and are easily accessible by IPython
interpreter.

• -A <plugin_args> / –plugin-arguments <plugin_args>: Arguments to execute the specified plugin
with the switch -P / –use-plugin. List of key/value pairs separated by colon. Used to over-
write the values of the config file for the project located in config/config.py. Example= nes-
susHost=127.0.0.1,nessusPort=8834,nessusUser=adastra,nessusPassword=adastra

6.2.6 Switches for Repository Mode

• -R <serviceType> / –onion-repository <serviceType>: Start Tortazo in Onion Repository Mode. The
valid values are: HTTP, SSH, FTP and ONIONUP. The value “ONIONUP” tries to use the online service
https://onionup.com/ to check if the onion addresses generated have an hidden service up and running.

6.2. Valued Switches. 19

https://onionup.com/

Tortazo Documentation, Release 1.1

• -W <Number of workers> / –workers-repository <Number of workers>: Number of processes used to
process the ONION addresses generated.

• -V <chars> / –validchars-repository <chars>: Valid characters to use in the generation process of onion
addresses. Default: All characters between a-z and digits between 2-7

• -O <partialOnionAddress> / –onionpartial-address <partialOnionAddress>: Partial address of a hidden
service. Used in Onion repository mode.

20 Chapter 6. Supported Switches in Tortazo.

CHAPTER 7

Available Plugins in Tortazo

There’s some plugins integrated in Tortazo and you can use them immediately just by loading the plugin in the inter-
preter using the switch “-P / –use-plugin”.

7.1 Plugins to Gather Information and enumeration of hidden ser-
vices and TOR relays

7.1.1 infoGathering. TODO IN 1.2!

Plugin Name: infoGathering

Definition: plugins.infogathering.infoGatheringPlugin.infoGatheringPlugin

Description:

Plugin with some functions to gather information about the relays located in the plugin’s context. The
source of the information could be from the last scan performed by Tortazo or from Database records
stored in previous scans.

Function Name Description Usage Example
help Shows the banner help. self.help()

infoGathering Plugin example

Interaction Example:

sudo python Tortazo.py -v -D -P infoGathering -U -T config/config-example/torrc-example

7.1.2 stemming

Plugin Name: stemming Definition: plugins.enumeration.deepWebStemmingPlugin.deepWebStemmingPlugin
Description:

Basic tasks of stemming module against hidden services in the TOR network. Uses IRL library to find
terms in hidden services in the TOR network.

21

Tortazo Documentation, Release 1.1

Function
Name

Description Usage Example

help Shows the banner help. self.help()
sim-
pleStem-
mingAll-
Relays

Stemming with the specified terms along the relays loaded in the
plugin. Searches in websites against common ports, like
80,8080,443 or in an specific port.

self.simpleStemmingAllRelays(“drugs
kill killer hitman”)

stem-
mingHid-
denService

Stemming with the specified terms in the onion address defined. self.stemmingWebSite(“http://torlinkbgs6aabns.onion/”,
“drugs kill killer”)

stemming Plugin example

Interaction Example:

sudo python Tortazo.py -v -D -P stemming -U -T config/config-example/torrc-example

7.1.3 crawler

Plugin Name: crawler

Definition: plugins.enumeration. deepWebCrawlerPlugin.deepWebCrawlerPlugin

Description:

This plugin uses Scrapy Framework to crawl a hidden service in TOR network. By default, the rules
used follow every link in the specified website and downloads the contents found, however the user could
overwrite this behavior specifying custom XPATH rules. The first action performed by the plugin is
create a new Socat tunnel in the local machine in the port 8765 by default. The endpoint will be the
hidden service specified by the user, but the crawler will performs the requests directly against the local
machine through the Socat tunnel created. This is very useful to route the requests from the local machine
to the TOR network transparently. Also, the user could specify arguments to overwrite the XPATH rules
for content extraction and the pages that the crawler should visit before to start the process.

The website structure will be stored in database and the contents will be downloaded in local file system in the path
“<TORTAZO_DIR>/onionSites/<hiddenServiceName>/”

22 Chapter 7. Available Plugins in Tortazo

http://torlinkbgs6aabns.onion/

Tortazo Documentation, Release 1.1

Function Name Description Usage Example
help Shows the banner help. self.help()
setExtractorRulesAllow Sets the XPATH rules to specify

the allowed pages to visit and anal-
yse. This value will be passed to
the “allow” attribute of the class:
“scrapy.contrib.linkextractors.LinkExtractor”

self.setExtractorRulesAllow(“index.php|
index.jsp”)

setExtractorRulesDeny Sets the XPATH rules to specify
the disallowed pages to visit and
analyze. This value will be passed
to the “deny” attribute of the class:
“scrapy.contrib.linkextractors.LinkExtractor”

self.setExtractorRulesDeny(“index.php|
index.jsp”)

setCrawlRulesLinks Sets the XPath rules to extract links
from every webpage analyzed. De-
fault value should be enough to al-
most every case, however you can use
this function to overwrite this value.
Default: ‘//a/@href‘

self.setCrawlRulesLinks(‘//a[contains(@href,
“confidential”)]/@href’)

setCrawlRulesImages Sets the XPath rules to extract images
from every webpage analyzed. De-
fault value should be enough to al-
most every case, however you can use
this function to overwrite this value.
Default: ‘ //img/@src‘

self.setCrawlRulesImages(‘//a[contains(@href,
“image”)]/@href’)

compareWebSiteWithHiddenWebSite Compares the contents of a website in
clear web with the contents of a web
site in TOR’s deep web. The return
value will be a percent of similitude
between both sites.

self.compareWebSiteWithHiddenWebSite(“http://exit-
relay-found.com/”,
“http://gai12dase4sw3f5a.onion/”)

compareRelaysWithHiddenWebSite This function will perform an HTTP
connection against every relay found.
If the response is a HTTP 200 status
code, performs an HTTP connection
against the hidden service specified
and compares the contents of both
responses. The return value will be
a percent of similitude between both
sites.

self.compareRelaysWithHiddenWebSite(“http://gai12dase4sw3f5a.onion/”)

crawlOnionWebSite This function executes a crawler
against the specified hidden service.
The following parameters allow to
control the behaviour of the crawler:
hiddenWebSite: The hidden site to
crawl. This is a mandatory parame-
ter. hiddenWebSitePort: Port for the
hidden site to crawl. Default value:
80 socatTcpListenPort: Port for the
Socat proxy. Default value: 8765
crawlImages: Search and download
the images from every page. Default
value: True. crawlLinks: Search and
visit the links found in every page.
Default value: True. crawlContents:
Download and save in local file sys-
tem the contents of every page found.
crawlFormData: Search the forms in
every page and store that structure
in database. deepLinks: Number of
Links that the crawler will visit in
deep. useRandomUserAgents: Use a
random list of User-Agents in every
HTTP connection performed by the
crawler. FuzzDB project is used to
get a list of User-Agents reading
the file fuzzdb/attack-payloads/http-
protocol/user-agents.txt bruterOn-
ProtectedResource: If true, when the
spider found an HTTP protected re-
source, tries to execute an bruteforce
attack using the specified dict file or
FuzzDB.

•
self.crawlOnionWebSite(“http://gai12dase4sw3f5a.onion/”)

•
self.crawlOnionWebSite(“http://gai12dase4sw3f5a.onion/”,
hiddenWebSitePort=8080,
crawlImages=False)

•
self.crawlOnionWebSite(“http://gai12dase4sw3f5a.onion/”,
crawlFormData=False)

7.1. Plugins to Gather Information and enumeration of hidden services and TOR relays 23

mailto:'//a/@href
mailto://img/@src
http://exit-relay-found.com/
http://exit-relay-found.com/
http://gai12dase4sw3f5a.onion/
http://gai12dase4sw3f5a.onion/
http://gai12dase4sw3f5a.onion/
http://gai12dase4sw3f5a.onion/
http://gai12dase4sw3f5a.onion/

Tortazo Documentation, Release 1.1

crawler Plugin example

Interaction Example:

sudo python Tortazo.py -v -D -P crawler -U -T config/config-example/torrc-example

7.1.4 shodan

Plugin Name: shodan

Definition: plugins.infogathering.shodanPlugin.shodanPlugin

Description:

Plugin used to perform tests against Shodan service using the information gathered by Tortazo. This
plugin is much more flexible that the switch “-s / –use-shodan”.

Function
Name

Description Usage Example

help Shows the banner help. self.help()
setApiKey Sets the API Key string. self.setApiKey(“XXXXXXXXXXXX”)
setApiKeyFile Sets the API Key file. Reads the first line of the file

and then sets the API Key string.
self.setApiKeyFile(“/home/apiKeyFile”)

basicSearch-
Query

Performs a basic search with Shodan. By default
prints the 10 first results

self.basicSearchQuery(“OpenSSL
1.0.1”, 15)

basic-
SearchAllRe-
lays

Performs a basic search with Shodan against all
TOR relays. Uses the “net” filter.

self.basicSearchAllRelays(“OpenSSL
1.0.1”)

basicSearch-
ByRelay

Performs a basic search with Shodan against the
specified TOR relay.

self.basicSearchByRelay(“OpenSSL
1.0.1”, “80.80.80.80”)

basicSearch-
ByNickname

Performs a basic search with Shodan against the
specified TOR NickName.

self.basicSearchByNickname(“OpenSSL
1.0.1”, “TORNickName”)

shodan Plugin example

Interaction Example:

sudo python Tortazo.py -v -D -P shodan -U -T config/config-example/torrc-example

7.2 Plugins to Pentesting and attack hidden services and TOR relays

7.2.1 bruter

Plugin Name: bruter

Definition: plugins.bruteforce.bruterPlugin.bruterPlugin

Description:

This plugin is used to perform dictionary attacks against TOR relays and hidden services. Supports brute
forcing against services like SSH, FTP, SNMP and SMB.

24 Chapter 7. Available Plugins in Tortazo

Tortazo Documentation, Release 1.1

Function
Name

Description Usage Example

help Shows the banner help. self.help()
setDict-
Separator

Sets an separator for the dictionary file. Every line en the
file must contain <user><separator><passwd>.

self.setDictSeparator(”:”)

ssh-
BruterOn-
Relay

Bruteforce attack against an SSH Server in the relay
entered. Uses FuzzDB if the dictFile is not specified.

self.sshBruterOnRelay(‘37.213.43.122’,
dictFile=’/home/user/dict’)

ssh-
BruterOnAll-
Relays

Bruteforce attack against an SSH Server in the relays
founded. Uses FuzzDB if the dictFile is not specified.

self.sshBruterOnAllRelays(dictFile=’/home/user/dict’)

ssh-
BruterOn-
Hid-
denSer-
vice

Bruteforce attack against an SSH Server in the onion
address entered. Uses FuzzDB if the dictFile is not
specified.

self.sshBruterOnHiddenService(“5bsk3oj5jufsuii6.onion”,
dictFile=”/home/user/dict”)

ftp-
BruterOn-
Relay

Bruteforce attack against an FTP Server in the relay
entered. Uses FuzzDB if the dictFile is not specified.

self.ftpBruterOnRelay(“37.213.43.122”,
dictFile=”/home/user/dict”)

ftp-
BruterOnAll-
Relays

Bruteforce attack against an FTP Server in the relays
founded. Uses FuzzDB if the dictFile is not specified.

self.ftpBruterOnAllRelays(dictFile=”/home/user/dict”)

ftp-
BruterOn-
Hid-
denSer-
vice

Bruteforce attack against an FTP Server in the onion
address entered. Uses FuzzDB if the dictFile is not
specified.

self.ftpBruterOnHiddenService(“5bsk3oj5jufsuii6.onion”,
dictFile=”/home/user/dict”)

smb-
BruterOn-
Relay

Bruteforce attack against an SMB Server in the relay
entered. Uses FuzzDB if the dictFile is not specified.

self.smbBruterOnRelay(“37.213.43.122”,
dictFile=”/home/user/dict”)

smb-
BruterOnAll-
Relays

Bruteforce attack against an SMB Server in the relays
founded. Uses FuzzDB if the dictFile is not specified.

self.smbBruterOnAllRelays(dictFile=”/home/user/dict”)

smb-
BruterOn-
Hid-
denSer-
vice

Bruteforce attack against an SMB Server in the onion
address entered. This function uses socat to create a local
Socks proxy and route the requests from the local
machine to the hidden service.

self.smbBruterOnHiddenService(“5bsk3oj5jufsuii6.onion”,
servicePort=139, localPort=139,
dictFile=”/home/user/dict”)

snmp-
BruterOn-
Relay

Bruteforce attack against an SNMP Server in the relay
entered. Uses FuzzDB if the dictFile is not specified.

self.snmpBruterOnRelay(“37.213.43.122”,
dictFile=”/home/user/dict”)

snmp-
BruterOnAll-
Relays

Bruteforce attack against an SNMP Server in the relays
founded. Uses FuzzDB if the dictFile is not specified.

self.snmpBruterOnAllRelays(dictFile=”/home/user/dict”)

http-
BruterOn-
Site

Bruteforce attack against a web site. Uses FuzzDB if the
dictFile is not specified.

self.httpBruterOnSite(“http://eviltorrelay.com/auth/”,
dictFile=”/home/user/dict”)

http-
BruterOn-
Hid-
denSer-
vice

Bruteforce attack against an onion site (hidden site in
TOR’s deep web). Uses FuzzDB if the dictFile is not
specified.

self.httpBruterOnHiddenService(“http://5bsk3oj5jufsuii6.onion/auth/”,
dictFile=”/home/user/dict”)

7.2. Plugins to Pentesting and attack hidden services and TOR relays 25

http://eviltorrelay.com/auth/
http://5bsk3oj5jufsuii6.onion/auth/

Tortazo Documentation, Release 1.1

bruter Plugin example

Interaction Example:

sudo python Tortazo.py -v -D -P bruter -U -T config/config-example/torrc-example

7.2.2 heartBleed

Plugin Name: heartBleed

Definition: plugins.attack.heartBleedPlugin.heartBleedPlugin

*Description: *

Perform HearthBleed Extension vulnerability tests. This plugin allows to discovery TOR relays with this
vulnerability.

Function
Name

Description Usage Example

help Shows the banner help. self.help()
setTarget Set the relay for the HeartBleed attack. Check the targets using the

function “printRelaysFound”. Default port: 443.
self.setTarget(“1.2.3.4”)

setTar-
getWithPort

Set the relay and port for the HeartBleed attack. Check the targets using
the function “printRelaysFound”.

self.setTarget(“1.2.3.4”,
“8443”)

startAttack Starts the HeartBleed attack against the specified target. self.startAttack()
startAttack-
AllRelays

Starts the HeartBleed attack against all relays loaded in the plugin.
Default port: 443

self.startAttackAllRelays()

heartBleed Plugin example

Interaction Example:

sudo python Tortazo.py -v -D -P heartBleed -U -T config/config-example/torrc-example

7.3 Plugins for integration with Third-Party tools

7.3.1 w3af

Plugin Name: w3af

Definition: plugins.thirdparty.w3afPlugin.w3afPlugin

Description:

W3AF is a powerful scanner focused on discovering vulnerabilities and attack in

web applications. As is written in Python and has a GNU/GPL license, you can use the classes and utilities from
any script in Python. In this case, the plugin does not only covers the features included in w3af, but also allows the
execution of audits in web applications that are hosted in the deep web. In the official release of W3AF, you can’t use
any site on the deep web whose target address is an ONION TLD. Using this plugin, allows you to do that.

Function Name Description Usage Example
help Shows the banner help. self.help()

Continued on next page

26 Chapter 7. Available Plugins in Tortazo

Tortazo Documentation, Release 1.1

Table 7.1 – continued from previous page
Function Name Description Usage Example
showPluginsByType List of available plugins filtered by type. self.showPluginsByType(“audit”)
showPluginTypes List of available plugin types. self.showPluginTypes()
getEnabledPluginsByType Enabled plugins by types. self.getEnabledPluginsByType(“audit”)
getPluginTypeDescription Description for the plugin type specified. self.getPluginTypeDescription(“audit”)
getAllEnabledPlugins List of enabled plugins. self.getAllEnabledPlugins()
enablePlugin Enable a plugin. self.enablePlugin(“blind_sqli”,”audit”)
disablePlugin Disable a plugin. self.disablePlugin(“blind_sqli”,”audit”)
enableAllPlugins Enable all plugins. self.enableAllPlugins(“audit”)
disableAllPlugins Disable all plugins. self.disableAllPlugins(“audit”)
getPluginOptions Get Options for the plugin specified. self.getPluginOptions(“audit”,”blind_sqli”)
setPluginOptions Set Options for the plugin specified. self.setPluginOptions(“audit”,”eval”,”boolean”,”use_time_delay”,”False”)
getPluginStatus Check if the specified plugin is enabled. self.getPluginStatus(“audit”,”eval”)
setTarget Sets the target for the attack (clear web). self.setTarget(“http://www.target.com”)
setTargetDeepWeb Sets the target in the Deep eb of TOR. self.setTarget(“http://torlongonionpath.onion”)
startAttack Starts the attack. self.startAttack()
listMiscConfigs List of Misc Settings. self.listMiscConfigs()
setMiscConfig Sets a Misc Setting. self.setMiscConfig(“msf_location”,”/opt/msf”)
listProfiles List of Profiles. self.listProfiles()
useProfile Use a Profile. self.useProfile(“profileName”)
createProfileWithCurrentConfig Creates a new Profile with the current settings. self.createProfileWithCurrentConfig(“profileName”, “Profile Description”)
modifyProfileWithCurrentConfig Modifies an existing profile with the current settings. self.modifyProfileWithCurrentConfig(“profileName”, “Profile Description”)
removeProfile Removes an existing profile. self.removeProfile(“profileName”)
listShells List of Shells. self.listShells()
executeCommand Executes a command in the specified shell. self.executeCommand(1,”lsp”)
listAttackPlugins List of attack plugins. self.listAttackPlugins()
listInfos List of Infos in the Knowledge Base of W3AF. self.listInfos()
listVulnerabilities List of Vulns in the Knowledge Base of W3AF. self.listVulnerabilities()
exploitAllVulns Exploits all vulns in the Knowledge Base of W3AF. self.exploitVulns(“sqli”)
exploitVuln Exploits the specified Vuln in the Knowledge Base of W3AF. self.exploitVulns(“sqli”,18)

w3af Plugin example

Interaction Example:

sudo python Tortazo.py -v -D -P w3af -U -T config/config-example/torrc-example -A

7.3.2 nessus

Plugin Name: nessus

Definition: plugins.thirdparty.nessusPlugin.nessusPlugin

Description:

This plugin is responsible for executing the authentication process against a Nessus instance and allows
you to use the full features of the Nessus engine against the repeaters

analyzed by Tortazo. It has the functions necessary to list the available plugins, manage policies, users, create specific
scans, scheduled scans and query reports generated by Nessus. To carry out the interaction between Tortazo and
Nessus, the pynessus-rest library is used; which has been developed primarily to meet the needs of this plugin and
directly uses the functions available in the latest version of Nessus REST API. In this way, you can run the same
tasks that are available from the web interface enabled on Nessus. Connection and authentication must be declared in

7.3. Plugins for integration with Third-Party tools 27

http://www.target.com
http://torlongonionpath.onion

Tortazo Documentation, Release 1.1

the properties file located in <TORTAZO_DIR>/config.py, which should specify the details for the connection to the
server; these details include the address and port of the Nessus server and the credentials required to access. On other
hand, if you want overwrite the configuration values without change the properties file, you can use the switch “-A /
–plugin-arguments” with the special keywords “nessusHost”, “nessusPort”, “nessusUser”, “nessusPassword”.

Function Name Description Usage Example
help Shows the banner help. self.help()
serverLoad Shows details about the load of the server. Number of opened sessions and memory usage, etc. self.serverLoad()
feed Return the Nessus Feed. self.feed()
serverSecureSettingsList List of Server Secure Settings. self.serverSecureSettingsList()
serverRegister Registers the Nessus server with Tenable Network Security. self.serverRegister(‘FEED_CODE’)
serverLoad Server Load and Platform Type. self.serverLoad()
serverUuid Server UUID. self.serverUuid()
userAdd Create a new user. The third parameter defines the user as administrator (1) or regular user (0). self.userAdd(‘adastra’,’adastra’,0)
userEdit Edit the user specified. The third parameter defines the user as administrator (1) or regular user (0). self.userEdit(‘adastra’,’new_password’,1)
userDelete Delete the user specified. The third parameter defines the user as administrator (1) or regular user (0). self.userDelete(‘adastra’)
userChpasswd Change the password for the user specified. The third parameter defines the user as administrator (1) or regular user (0). self.userChpasswd(‘adastra’,’new_password’)
usersList List of users. self.usersList()
pluginsList List of plugins. self.pluginsList()
pluginAttributesList List of plugins attributes for plugin filtering. self.pluginListsFamily(‘AIX Local Security Checks’)
pluginDescription Returns the entire description of a given plugin. self.pluginDescription(‘ping_host.nasl’)
pluginsAttributesFamilySearch Filters against the family of plugins. self.pluginsAttributesFamilySearch(‘match’,’or’,’modicon’,’description’)
pluginsAttributesPluginSearch Returns the plugins in a family that match a given filter criteria. Check the Nessus documentation to see filter criteria. self.pluginsAttributesPluginSearch(‘match’,’or’,’modicon’,’description’,’FTP’)
pluginsMd5 List of plugin file names and corresponding MD5 hashes. self.pluginsMd5()
policyList List of available policies, policy settings and default values. self.policyList()
policyDelete Delete the policy specified. self.policyDelete(POLICY_ID)
policyCopy Copies an existing policy to a new policy. self.policyCopy(POLICY_ID)
policyDownload Download the policy from the server to the local system. self.policyDownload(POLICY_ID, /home/user/policy.nessus)
scanAllRelays Create a new scan with all relays loaded. self.scanAllRelays(<POLICY_ID>, ‘newScan’)
scanByRelay Create a new scan with the specified relay. self.scanAllRelays(<POLICY_ID>, ‘newScan’, <IP_OR_NICKNAME>)
scanStop Stops the specified started scan. self.scanStop(<SCAN_UUID>)
scanResume Resumes the specified paused scan. self.scanResume(<SCAN_UUID>)
scanPause Pauses the specified actived scan. self.scanPause(<SCAN_UUID>)
scanList List of scans. self.scanList()
scanTemplateAllRelays Create a new scan template (scheduled) with all relays loaded. self.scanTemplateAllRelays(<POLICY_ID>,<TEMPLATE_NAME>)
scanTemplateByRelay Create a new scan template (scheduled) with the specified relay. self.scanTemplateByRelay(<POLICY_ID>,<TEMPLATE_NEW_NAME>,<IP_OR_NICKNAME>)
scanTemplateEditAllRelays Edit the scan template specified with all relays loaded. self.scanTemplateEditAllRelays(<POLICY_ID>,<TEMPLATE_NEW_NAME>)
scanTemplateEditByRelay Edit the scan template specified with the specified relay. self.scanTemplateEditByRelay(<TEMPLATE_UUID>,<TEMPLATE_NEW_NAME>,<POLICY_ID>,<IP_OR_NICKNAME>)
scanTemplateDelete Delete the scan template specified. self.scanTemplateDelete(<TEMPLATE_UUID>)
scanTemplateLaunch Launch the scan template specified. self.scanTemplateLaunch(<TEMPLATE_UUID>)
reportList List of available scan reports. self.reportList()
reportDelete Delete the specified report. self.reportDelete(<REPORT_UUID>)
reportHosts List of hosts contained in a specified report. self.reportHosts(<REPORT_UUID>)
reportPorts List of ports and the number of findings on each port. self.reportPorts(<REPORT_UUID>,<HOSTNAME>)
reportDetails Details of a scan for a given host. self.reportDetails(<REPORT_UUID>,<HOSTNAME>,<PORT>,<PROTOCOL>)
reportTags Tags of a scan for a given host. self.reportTags(<REPORT_UUID>, <HOSTNAME>)
reportAttributesList List of filter attributes associated with a given report. self.reportAttributesList(<REPORT_UUID>)

nessus Plugin example

Interaction Example:

28 Chapter 7. Available Plugins in Tortazo

Tortazo Documentation, Release 1.1

sudo python Tortazo.py -v -D -P nessus -U -T config/config-example/torrc-example
sudo python Tortazo.py -v -D -P nessus -U -T config/config-example/torrc-example -A nessusHost=192.168.1.20,nessusPort=8834,nessusUser=adastra,nessusPassword=adastra

7.3. Plugins for integration with Third-Party tools 29

Tortazo Documentation, Release 1.1

30 Chapter 7. Available Plugins in Tortazo

CHAPTER 8

Plugin Development in Tortazo

Develop a plugin in Tortazo is a very simple task, which is composed by the following steps:

1. Create a Python file in <TORTAZO_DIR>/plugins/<CATEGORY> where category is the root module which
better describes the actions of your plugin (attack, bruteforce, enumeration, infogathering, etc.) In <TOR-
TAZO_DIR>/plugins you’ll see the module “examples” where you can create your Python file to follow this
guide.

2. Open the Python file created in the previous step and creates a new class which will extend from the class
“core.tortazo.pluginManagement.BasePlugin.BasePlugin”. BasePlugin class defines the elements to integrate Python
routines with Tortazo, so every plugin developed in Totazo must be an sub-class of BasePlugin class. Also, you should
define a constructor (__init__) with the parameter “torNodes” which will be used by Tortazo to inject the dataset of
relays loaded in the execution context; as probably already you know, data are the relays found in the current scan
performed by Tortazo or database records from previous scan, depends on the switches used. The following script
could be a valid example

from core.tortazo.pluginManagement.BasePlugin import BasePlugin

class TestPlugin(BasePlugin):
def __init__(self, torNodes=[]):

BasePlugin.__init__(self, torNodes, ’examplePlugin’)
self.setPluginDetails(’testPlugin’, ’Example of a plugin in Tortazo.’, ’1.0’, ’Adastra: @jdaanial’)
self.info("[*] examplePlugin Initialized!")

def __del__(self):
self.info("[*]testPlugin Destroyed!")

Note that you should use the function “setPluginDetails” to define the settings for the plugin (name, description,
version and author).

3. Your plugin is almost done. Now you need to register it in Tortazo. Edit the file <TOR-
TAZO_DIR>/pluginsDeployed.py and add your new plugin in the dict structure defined in the script. You
need to add the name for your plugin and the class that you’ve defined in the previous step. For example

plugins = {
#OTHER PLUGINS LOADED IN TORTAZO
#Now, the definition of your plugin.
"testingPlugin": plugins.examples.testing.TestPlugin"
}

Assuming that you’ve created the module “testing” inside the module “plugins.examples”, the class “TestPlugin” will
be loaded in Tortazo when you use the switch “-P / –use-plugin”. Execute the following command to check if your
plugin can be successfully loaded.:

31

Tortazo Documentation, Release 1.1

python Tortazo.py -v -D -P testingPlugin

If you can see the IPython interpreter loaded, you’re done. Your simple plugin is now integrated in Tortazo. Please,
note that if your python script has compilation errors, the load process will fail, so you should verify that your program
don’t have any errors before trying to load it in Tortazo.

8.1 Utilities in Tortazo for Plugin Development.

When you create a plugin, the functions declared in that plugin will require access to hidden services and TOR relays.
You can’t access to any hidden service without a connection with TOR and a Socks proxy up and running. The utilities
included in Tortazo manages this issues for you and you can create and start your own TOR instance (with a Socks
Proxy to browse in the TOR deep web) or indicate to Tortazo that executes an local instance and uses the Socks Proxy
settings to connect with any hidden service. The main utility to perform connections to SMB, SSH, HTTP, FTP, and
other services in the TOR deep web is the attribute “serviceConnector” defined in the class “BasePlugin”. The class
“ServiceConnector” includes some functions to performs connections to services in TOR and uses utilities to manage
connections like “socat” and “connect-socks”. The functions declared in “ServiceConnector” are the following:

32 Chapter 8. Plugin Development in Tortazo

Tortazo Documentation, Release 1.1

Function Name Description
startLocalSocatTunnel(self, tcpLis-
ten,hiddenServiceAddress,hiddenServicePort,
socksPort=‘9150’)

Starts a local socat tunnel using the “TCP4-LISTEN” switch.
The command executed will have the following format:
<TORTAZO_INSTALL>/plugins/utils/socat/socat
TCP4-LISTEN:<tcp_port>,reuseaddr,fork
SOCKS4A:127.0.0.1:<hidden_service_onion_address>:<hidden_service_onion_port>,socksport=<tor_socksport>
&

anonymousFTPAccess(self,host, port) Tries to perform an FTP anonymous connection in the host and
port specified.

performFTPConnection(self, host, port, user,
passwd)

Tries to perform an FTP connection using the user and password
specified.

performSSHConnection(self, host, port, user,
passwd, brute=False)

Tries to perform an SSH connection using the user and password
specified. If the parameter “brute” is True, Tortazo will append
the connection settings to the tortazo_botnet.bot file.

performSSHConnectionHiddenService(self,
onionService, port, user, passwd)

Tries to perform an SSH connection using the user and password
specified against a hidden service.

performSNMPConnection(self, host,
port=161, community=’public’)

Tries to perform an SNMP connection using the community
name specified.

performSMBConnection(self,
host=‘127.0.0.1’, port=139, user=””,
passwd=””)

Tries to perform an SMB connection using the user and
password specified. If the connection is successful, lists the
shared resources in the server.

performHTTPAuthConnection(self, url, user,
passwd)

Tries to perform an HTTP connection using the user and
password specified against a protected resource in the server.
This function checks if the resource has Basic or Digest
authentication.

performHTTPConnectionHiddenService(self,
onionUrl, headers={}, method=”GET”,
urlParameters=None, auth=None)

Tries to perform an HTTP connection against a hidden service.
The caller of the function could specify headers, url parameters
and authentication details as needed.

performHTTPConnection(self, siteUrl,
headers, method=”GET”,
urlParameters=None, auth=None)

Tries to perform a HTTP connection against the web site
specified. The caller of the function could specify headers, url
parameters and authentication details as needed.

setSocksProxySettings(self, socksHost,
socksPort)

Sets the socks proxy settings. Host and Port where the TOR
socks proxy is running.

setSocksProxy(self) Enable the socks proxy defined by the function
“setSocksProxySettings” and allows to route every connection
through the TOR socks proxy.

unsetSocksProxy(self) Disable the socks proxy defined by the function
“setSocksProxySettings” and allows to perform every connection
directly with the service, without using the TOR socks proxy.

8.1. Utilities in Tortazo for Plugin Development. 33

Tortazo Documentation, Release 1.1

34 Chapter 8. Plugin Development in Tortazo

CHAPTER 9

GENERAL FAQs

9.1 ¿What is this?

Please, read the gentle introduction of Tortazo. About Tortazo - Gentle Introduction.

9.2 I have problems when I run “Tortazo.py” script.

Please, check the dependencies and verify that your environment satisfies them.

9.3 ¿This is free?

Yes, free as the air you breathe. This project is licensed under GNU/GPLv2

9.4 ¿How can I help you?

Fine! if you want to help, you can:

• read the documentation and improve the documents.

• Find errors

• Test the framework

• Report bugs and if you can, write code.

You can write me an email to debiadastra [at] gmail.com

35

Tortazo Documentation, Release 1.1

36 Chapter 9. GENERAL FAQs

CHAPTER 10

SPECIFIC FAQs

10.1 I get “Import Errors” when I run the Tortazo.py script.

Please, check the dependencies of Tortazo and then proceed to install the Python libraries Instalation and Dependen-
cies.

10.2 I have problems running the onion repository mode and some
plugins which perform connections against hidden services in
TOR, ¿what am I doing wrong?

Every connection against the Deep web, must to use a SOCKS proxy to route the traffic through a TOR circuit. To do
that, you must start a local instance of TOR and setting the “SocksPort” property in the configuration file “torrc” used
to start TOR. On other hand, the default value for that port in Tortazo is “9150” and you can change that value manually
editing property “socksPort” in the configuration file “config/config.py” (If you’re using the development version, you
can’t change that value using the executable distributed). Also, if you want to start automatically a new instance of
TOR when you’re executing Tortazo, just specify the switches -T / –tor-localinstance and -U / –use-localinstance.
Check the switches available in Tortazo Supported Switches in Tortazo.

10.3 I get an error when try to loading a Plugin

Check two things: 1. The user that runs the command must read and write over the structure directories where
Tortazo runs. Check the permissions of your user. 2. The argument passed to the switch -P / –use-plugin must
include a valid plugin registered in the application. To see the modules enabled in Tortazo, check the configuration file
“pluginsDeployed.py”

10.4 Oh man, the onion repository mode has been running for the
last “n” hours and I don’t have any result ¿Am I doing something
wrong?

Well, this could be something normal. Please, check the onion repository documentation repository-mode-label Also,
you must have a TOR local instance up and running with the SocksPort property enabled.

37

Tortazo Documentation, Release 1.1

10.5 When I run some functions of the plugins “crawler” or “hid-
denService” twice, I get the error “ReactorNotRestartable”.

The crawler plugin uses Scrapy Framework (http://scrapy.org/) which uses Twisted for every connection and network
process. Twisted have an element called “reactor” which is designed to not be “restartable”, so if you run the function
“crawlOnionWebSite” from the crawler plugin twice, you’ll get that error. You should exit from the plugin interpreter
and run the plugin again.

10.6 I’m trying to use shodan to gather information about the relays
found, but I get errors

To use Shodan, you’ll need a valid Shodan Key, which you can get if created a new Shodan account.
http://www.shodanhq.com/ Also, the shodan key must be included in a plain-text file (in just one line) and use the
switch -k / –shodan-key If you use the Shodan plugin available, you’ll have another extended options to perform
searches against shodan. Supported Switches in Tortazo.

10.7 I get an strange error... ¿What can I do?

Well, your question is very ambiguous, don’t you think? If after read the documentation Getting Started and read this
FAQ. If you can not solve it, please contact me.

38 Chapter 10. SPECIFIC FAQs

http://scrapy.org/
http://www.shodanhq.com/

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

39

	About Tortazo - Gentle Introduction.
	What?
	How?
	Why?
	When?
	Who?
	Contact?
	Legal Warning!!

	Getting Started
	Instalation and Dependencies
	Other Dependencies
	Usage of Tortazo: Execution Modes
	Plugins management
	Repository Mode

	Mode Gather Information.
	Gather information about exit relays in TOR

	Database mode in Tortazo
	Botnet mode in Tortazo.
	Botnet mode examples.

	Supported Switches in Tortazo.
	Simple Switches.
	Valued Switches.

	Available Plugins in Tortazo
	Plugins to Gather Information and enumeration of hidden services and TOR relays
	Plugins to Pentesting and attack hidden services and TOR relays
	Plugins for integration with Third-Party tools

	Plugin Development in Tortazo
	Utilities in Tortazo for Plugin Development.

	GENERAL FAQs
	¿What is this?
	I have problems when I run ``Tortazo.py'' script.
	¿This is free?
	¿How can I help you?

	SPECIFIC FAQs
	I get ``Import Errors'' when I run the Tortazo.py script.
	I have problems running the onion repository mode and some plugins which perform connections against hidden services in TOR, ¿what am I doing wrong?
	I get an error when try to loading a Plugin
	Oh man, the onion repository mode has been running for the last ``n'' hours and I don't have any result ¿Am I doing something wrong?
	When I run some functions of the plugins ``crawler'' or ``hiddenService'' twice, I get the error ``ReactorNotRestartable''.
	I'm trying to use shodan to gather information about the relays found, but I get errors
	I get an strange error... ¿What can I do?

	Indices and tables

